
Quantum Multiverse Navigation: Testable Framework with
Empirical Validation

Author: Gust Isotalo and Brent Antonson
Date: January 14, 2026

Abstract

This document presents a streamlined, testable architecture for stabilizing complex dynamical
systems and augments it with evidence from the literature on high-dimensional control. We
define a system state, coherence metric, divergence metric and a control algorithm (Da’at
Command) that triggers interventions when the system drifts from a target regime. A notation
table and algorithms are provided. Recent case studies in reduced-order model predictive control
and fast stochastic model predictive control demonstrate that high-dimensional models—on the
order of ten thousand to one million states—can be stabilized with reduced computational burden
【943755515450370†L97-L108】【250286303876478†L60-L69】. We outline simulation
protocols for evaluating the approach, discuss empirical validation strategies, and address
computational cost when scaling to high-dimensional systems.

1. Overview

The original proposal aimed to integrate concepts from quantum physics, dynamical systems and
control theory. This version reframes it as a practical research program. The core question is
whether an adaptive control mechanism informed by coherence and information divergence can
stabilize chaotic or sensitive systems. We define all variables and thresholds precisely and
describe an algorithmic intervention strategy. In addition, we consider the feasibility of applying
the algorithm to very high-dimensional models by examining existing empirical evidence from
the literature.

2. Scope and Non-Claims

Our framework is a control algorithm for mathematical or computational models of dynamical
systems. It does not claim to describe physical quantum gravity, consciousness or metaphysical
realities. The term “multiverse” refers to a high-dimensional state space. Labels from Kabbalah
are used as neutral shorthand. The focus is on:

• Defining system variables, update rules and observations.
• Measuring coherence in a system via a chosen scalar metric.
• Quantifying divergence between observed behavior and a template distribution using KL

divergence.
• Triggering a controlled intervention based on these measurements.
• Evaluating the algorithm against standard control methods.
• Considering empirical evidence from high-dimensional control to assess feasibility and

1

computational cost.

3. Symbols and Definitions

Symbol Meaning / Type Notes
(x_t) State vector at time (t) Elements of (^d) or similar; governed by a

dynamics rule.
(t), (t) Time index and step size Applicable to discrete or continuous time models.
() System representation Configuration on a lattice, field, or graph.
((x_t)) Coherence metric Scalar in ([0,1]); larger means more order.
(_c) Coherence threshold Collapse triggered if ((x_t) < _c).
() KL divergence threshold Collapse triggered if divergence exceeds ().
(P_{}) Observed distribution Derived from recent states via a sliding window.
(P_{}) Template distribution Represents desired system behavior.
(D_{}) Kullback–Leibler divergence Measures how far (P_{}) deviates from (P_{}).
(u_t), () Control input or policy Input applied when a collapse is triggered.
(W) Window length Number of steps used to estimate (P_{}).

4. Coherence Metric

Several choices for () exist:

• Phase coherence: (= |_{k=1}^N e^{i_k}|), where (_k) is the phase of component (k).
• Normalized entropy: (= 1 -), where (H(G_t)) is the entropy of a graph (G_t).
• Distance to attractor: (= 1/(1 + |x_t - x_|)), where (x_) is a target state.

Any metric that quantifies order can be used, provided it maps to ([0,1]) and decreases as the
system becomes disordered. When applying to high-dimensional systems, care should be taken
to select metrics that are computationally tractable (e.g., approximate entropy measures or
coherence measures that can be estimated from reduced representations).

5. Distribution Estimation

Define (z_t = f(x_t)). Collect (W) consecutive samples ({z_{t-W+1}, , z_t}) and estimate (P_{})
using histograms, kernel density estimation or parametric models. The template distribution
(P_{}) may come from stable baseline runs or analytical definitions. Compute (D_{}(P_{}
P_{})) using the standard formula. For high-dimensional systems, low-dimensional observations
(z_t) may be obtained by projecting (x_t) onto a set of principal modes (e.g. via proper
orthogonal decomposition) or by using an input–output representation similar to dynamic matrix
control; this can reduce the dimension of the distribution estimation problem and keep the
computational cost manageable.

6. Da’at Command Algorithm
Inputs:
 - States {x_t}
 - Window W, thresholds Φ_c and ε

2

 - Coherence metric Φ, estimators for P_obs and P_temp
 - Control operator T̂ or policy π

Initialize c_t = 0 for all t
For each t ≥ W:
 1. z_t ← f(x_t)
 2. Compute Φ(t) = Φ(x_t)
 3. Estimate P_obs from {z_{t-W+1}, …, z_t}
 4. Compute KL(t) = D_KL(P_obs || P_temp)
 5. If Φ(t) < Φ_c and KL(t) > ε:
 c_t ← 1
 Apply T̂ (x_t) or set u_t = π(x_t)
 Else:
 c_t ← 0
Output: decisions {c_t}, updated states {x_t}

This algorithm is system-agnostic and can be applied to a variety of discrete or continuous
dynamical models. Thresholds can be fixed or tuned using baseline data. When implementing on
high-dimensional systems, the costs associated with updating (z_t), estimating distributions and
computing () may be dominated by dimension; thus dimensionality reduction or input–output
formulations are advised.

7. Simulation Plan and Falsifiability

1. Test systems: Choose examples ranging from low-dimensional chaos (e.g. logistic map,
Henon map) to high-dimensional models (e.g. coupled oscillators with hundreds of states,
discretized fluid dynamics). For the latter, a reduced-order approximation or input–output
representation should be used to manage computational cost.

2. Metrics: Use Lyapunov exponents, stability times and basin measures to quantify
improvement. Track the coherence metric over time and the frequency of interventions.

3. Baselines: Implement controllers for comparison: no control, PID, LQR, reinforcement
learning and standard methods like dynamic matrix control. Include reduced-order model
predictive control (ROMPC) and fast stochastic model predictive control (FSMPC) as
context.

4. Algorithm evaluation: Run the Da’at Command algorithm on each system, record
stability outcomes, and compare to baselines. Use ablation to remove the coherence
trigger or divergence trigger individually.

5. Hypothesis testing: Use statistical tests to determine whether the algorithm improves
stability relative to baselines. If no significant improvement is observed across multiple
systems and parameters, reject the hypothesis.

8. Empirical Validation from High-Dimensional Control

The feasibility of stabilizing high-dimensional dynamical systems has been demonstrated in
recent control research:

• Reduced-Order Model Predictive Control (ROMPC). Lorenzetti’s dissertation
developed a model predictive control framework that uses reduced-order approximations
to control systems with extremely large state spaces. Two case studies validated the

3

approach: (i) a linear coupled rigid-body/fluid dynamics model for aircraft control with a
computational fluid dynamics (CFD) model exceeding one million dimensions; (ii) a
nonlinear finite element model (FEM) with over ten thousand dimensions for soft robot
control. Simulation and hardware experiments showed that ROMPC can achieve practical
performance on these high-dimensional systems【943755515450370†L97-L108】.

• Fast Stochastic Model Predictive Control (FSMPC). Von Andrian and Braatz extended
stochastic MPC formulations to handle high state dimensions and uncertain dynamics. In
a realistic manufacturing system with roughly 8,000 states, the FSMPC algorithm had an
online computational cost of under one second per sampling instance due to its input–
output model formulation【250286303876478†L60-L69】. This cost was far below the
system’s sampling period (one minute), demonstrating that high-dimensional state space
does not necessarily lead to prohibitive computational load when an appropriate
representation is used.

These results suggest that our framework could be validated on systems of comparable scale
using reduced representations. The ROMPC case studies indicate that control algorithms
informed by reduced models can be experimentally implemented on physical systems with
millions of states. The FSMPC example shows that computational cost can remain tractable even
for thousands of states when using an input–output model. For the Da’at Command algorithm,
similar strategies—projecting onto dominant modes and estimating distributions over a reduced
window—would be essential for empirical validation at high dimensionality.

9. Computational Cost Considerations

The computational burden of the Da’at Command algorithm depends on the cost of computing
the coherence metric, estimating distributions and solving the control update. For
high-dimensional systems:

• Reduced-order models: Use reduced basis or principal component analysis to project the
system state onto a lower dimension before computing () and (P_{}). This mirrors the
ROMPC approach and can reduce the complexity from millions of states to tens or
hundreds while preserving essential dynamics【943755515450370†L97-L108】.

• Input–output formulation: When only a few outputs and inputs are relevant, adopt an
input–output model such as dynamic matrix control. The FSMPC algorithm demonstrates
that this yields an online computational cost largely independent of the full state
dimension【250286303876478†L60-L69】. Implementation details include
precomputing step response coefficients and updating control signals based solely on
observed outputs.

• Sampling and window size: Choose the window length (W) and sampling interval such
that the distribution estimation step can be completed within the available computation
time. For high-dimensional states, short windows or incremental estimators may be
necessary.

• Parallelism and hardware acceleration: Distribution estimation and coherence
calculation can be parallelized across processing cores or GPUs. Real-time requirements
should be matched against available computational resources.

4

Ultimately, the algorithm’s feasibility in high-dimensional settings will depend on balancing
accuracy and computational cost. Empirical testing on reduced models or input–output
representations should be conducted to measure run-time per step, compare against the sampling
period and confirm that interventions are computed within the required latency.

10. Related Work

This approach builds upon chaos control techniques (e.g., the Ott–Grebogi–Yorke method),
information-theoretic control, quantum cellular automata, and adaptive feedback. It is also
influenced by recent work in reinforcement learning and algorithmic complexity measures.
Reduced-order model predictive control and stochastic MPC provide examples of successfully
controlling high-dimensional systems【943755515450370†L97-L108】
【250286303876478†L60-L69】.

11. Limitations and Future Work

Current limitations include sensitivity to parameter choices, the need for systematic benchmarks
and the open question of how best to integrate dimensionality reduction with the algorithm.
Future work should:

• Implement the Da’at Command algorithm on high-dimensional testbeds using reduced
models or input–output representations.

• Compare computational cost per time step to the system’s sampling period, drawing on
benchmarks from ROMPC and FSMPC literature【943755515450370†L97-L108】
【250286303876478†L60-L69】.

• Explore adaptive threshold selection for (_c) and () to ensure robust performance across
different systems.

• Investigate synergy with learning methods (e.g., reinforcement learning) for more
sophisticated control policies.

This version integrates a concrete empirical validation perspective, citing existing
high-dimensional control studies and explaining how similar strategies can be used to test the
proposed framework. It addresses computational scalability and outlines next steps for applying
the algorithm to real systems.

5

	Quantum Multiverse Navigation: Testable Framework with Empirical Validation
	Abstract
	1. Overview
	2. Scope and Non‑Claims
	3. Symbols and Definitions
	4. Coherence Metric
	5. Distribution Estimation
	6. Da’at Command Algorithm
	7. Simulation Plan and Falsifiability
	8. Empirical Validation from High‑Dimensional Control
	9. Computational Cost Considerations
	10. Related Work
	11. Limitations and Future Work

